Một số bất đẳng thức đã được chứng minh thường sử dụng để để giải những bài tập BĐT cơ bản và nâng cấp trong chương trình Toán THCS.

Bạn đang xem: Bất đẳng thức nâng cao

Bất đẳng thức vào chương trình Toán thcs lớp (6, 7, 8, 9) là một dạng toán hay và khó. Những bài tập chứng minh BĐT thường là bài xích cuối cùng trong số đề thi để phân loại học sinh, vấn đề chứng minh bất đẳng thức trung học cơ sở thi học sinh giỏi cấp quận (huyện), tỉnh, thành phố.

Bất đẳng thức trung học cơ sở cơ bản với nâng cao

Các bất đẳng thức cấp 2 thường sử dụng là:

1. Bất đẳng thức AM-GM (Arithmetic Means – Geometric Means):

Với những bộ số

*
không âm ta có:

*
a_1a_2…a_n" title="Rendered by QuickLaTeX.com" height="35" width="261" style="vertical-align: -12px;">

Ta bao gồm 3 dạng thường gặp của bđt này là.

Xem thêm: Sơ Đồ Tư Duy Hồn Trương Ba Da Hàng Thịt, Sơ Đồ Tư Duy Hồn Trương Ba, Da Hàng Thịt

Dạng 1:

*
a_1a_2…a_n" title="Rendered by QuickLaTeX.com" height="35" width="261" style="vertical-align: -12px;">

Dạng 2:

*
a_1a_2…a_n" title="Rendered by QuickLaTeX.com" height="18" width="270" style="vertical-align: -5px;">

Dạng 3:

*

Dấu “=” xảy ra khi

*

Đối với BĐT này ta cần thành thạo kĩ thuật sử dụng bđt AM-GM mang đến 2 số cùng 3 số

2. Bất đẳng thức Cauchy-Schwarz (Bunyakovsky)

Dạng tổng quát: cho là 2n số thực tùy ý khi đó

Dạng 1:

*
(1)

Dạng 2:

*
(2)

Dạng 3:

*
(3)

Dấu “=” xảy ra ở (1)(2)

*

Dấu “=” xảy ra ở (3)

*

Quy ước mẫu bằng 0 thì tử bằng 0

3. Bất đẳng thức Cauchy-Schwarz dạng Engel tuyệt còn gọi là BĐT Schwarz

Cho là những số >0

Ta có:

*

Dấu “=” xảy ra khi

*

4. Bất đẳng thức Chebyshev (Trê- bư-sép)

Dạng tổng quát lác Nếu

*

Hoặc

*

Dạng 1:

*

Dạng 2:

*

Nếu

*

hoặc

*

Dạng 1:

*

Dạng 2:

*

Bất đẳng thức Chebyshev ko được sử dụng trực tiếp cơ mà phải chứng minh lại bằng biện pháp xét hiệu

Bất đẳng thức Chebyshev cho dãy số sắp thứ tự, vì chưng đó nếu các số chưa sắp thứ tự ta phải giả sử gồm quan hệ thứ tự giữa những số.

5. Bất đẳng thức Bernoulli

Với

*
-1;rge 1vee rle 0Rightarrow (1+x)^rge 1+rx" title="Rendered by QuickLaTeX.com" height="19" width="328" style="vertical-align: -5px;">

Nếu

*
r>0" title="Rendered by QuickLaTeX.com" height="14" width="73" style="vertical-align: -2px;"> thì
*

Bất đẳng thức này có thể chứng minh bằng phương pháp quy nạp hoặc sử dụng BĐT AM-GM

6. Bất đẳng thức Netbitt

Ở đây bản thân chỉ nêu dạng thường dùng

Với x,y,z là những số thực >0

Bất đẳng thức Netbitt 3 biến:

*

Dấu “=” xảy ra khi x=y=z>0

BĐT Netbitt 4 biến:

*

Dấu “=” xảy ra lúc a=b=c=d>0

7. Bất đẳng thức mức độ vừa phải cộng – vừa phải điều hòa AM-HM (Arithmetic Means – Hamonic Means)

Nếu

*
là những số thực dương thì

*

Dấu “=” xảy ra khi

*

8. Bất đẳng thức Schur

Dạng thường gặp

Cho a,b,c là những số không âm

*

*
với r là số thực dương

Đẳng thức xảy ra khi a=b=c hoặc a=0 với b=c và những hoán vị

9. Bất đẳng thức chứa dấu giá bán trị tuyệt đối

Với mọi số thực x,y ta có

*

Đẳng thức xảy ra khi x,y cùng dấu hay

*

Với mọi số thực x,y ta có

*

Dấu “=” xảy ra khi và chỉ khi

*

10. Bất đẳng thức Mincopxki

Với 2 bộ n số

*
*
thì :

Dạng 1:

*

Dạng 2: mang đến x,y,z,a,b,c là những số dương ta có

*
a b c+sqrt<4>x y z leq sqrt<4>(a+x)(b+y)(c+z) sqrta c+sqrtb d leq sqrt(a+b)(c+d)" title="Rendered by QuickLaTeX.com" height="22" width="538" style="vertical-align: -6px;">