Định nghĩa: cho hai vecto












Bạn đang xem: Cộng vecto

Phép toán kiếm tìm tổng của nhị vecto hotline là phép cộng vecto.
a. Nguyên tắc hình bình hành:
Minh họa phép cùng hai vecto bằng quy tắc hình bình hành như sau:
Nếu ABCD là hình bình hành thì::




b. đặc thù phép cùng vecto:
với 3 vecto







(









2. Hiệu của hai vecto:
Vecto gồm cùng độ dài và ngược phía với



Mỗi vecto đều sở hữu vecto đối, chẳng hạn vecto đối của




Vecto đối của


Định nghĩa: đến hai vecto a, b, ta call hiệu của a trừ b



Như vậy




Minh họa:

3. Nguyên tắc tam giác:
Với 3 điểm A, B, C bất kì, theo quy tắc cùng trừ vecto, ta có:






4. Áp dụng:
a.Nếu I là trung điểm AB thì


b. Nếu G là giữa trung tâm tam giác ABC thì


Lấy D là vấn đề đối xứng với G qua E, lúc đó BGCD là hình bình hành (hai đường chéo cắt nhau trên trung điểm mỗi đường) cùng G là trung điểm của AD (vì GA = 2GE = GD).
Ta có:



Suy ra:


II. Bài xích tập vận dụng:

Giải:
Trên đoạn thẳng AB ta mang điểm M′ để có →


Như vậy



Vậy vecto "


"


Ta lại có:



Theo đặc điểm giao hoán của tổng vecto ta có:



Vậy



Giải:










Giải:
Trong tam giác phần nhiều ABC, chổ chính giữa O của mặt đường tròn nước ngoài tiếp cũng là giữa trung tâm tam giác. Vậy


Giải:
Ta có:








Giải:
Ta có:



Từ đó suy ra:



III. Bài bác tập tự luyện:
Bài 1: mang đến tam giác ABC bao gồm trung tuyến AM. Bên trên cạnh AC rước hai điểm E cùng F sao cho AE = EF = FC; BE cắt AM trên N. Chứng minh


Bài 2: cho hình bình hành ABCD. Hotline O là một điểm bất kể trên đường chéo AC. Qua O kẻ các đường thẳng song song với những cạnh của hình bình hành. Những đường trực tiếp này giảm AB với DC theo thứ tự tại M với N, cắt AD với BC lần lượt tại E cùng F. Minh chứng rằng



Bài 3: mang đến tứ giác ABCD, chứng tỏ rằng tứ giác ABCD là hình bình hành khi và chỉ khi

Bài 4: đến hình lục giác những ABCDEF gồm tâm O. Kiếm tìm Véctơ không giống và cùng phương .
Bài 5: đến tam giác đông đảo ABC cạnh a. Tính độ dài những vectơ :





Bài 6: hình vuông vắn ABCD cạnh a. Tính độ dài các vectơ :
a. +

b. -

Bài 7: mang đến tam giác ABC, bên phía ngoài tam giác vẽ những hình bình hành ABIJ, BCPQ, CARS. Chứng minh rằng:


Bài 8: mang lại hình bình hành trung khu O. Chứng tỏ rằng











Xem thêm: Ứng Dụng Họp Trực Tuyến Miễn Phí, Hữu Ích Hiện Nay 2022, Nền Tảng Và Phần Mềm Họp Trực Tuyến
Chúc chúng ta học tốt.
nội dung bài viết gợi ý:
1. Số vừa đủ cộng. Số trung vị. Mốt 2. Tích vô vị trí hướng của hai vectơ. 3. VÉC - TƠ. CÁC PHÉP TOÁN CỦA VÉC - TƠ. BÀI TẬP 4. Hàm Số bậc nhất và Hàm Số Bậc hai 5. Tập hợp. 6. MỆNH ĐỀ VÀ SUY LUẬN TOÁN HỌC 7. Hàm Số