Viết phương trình đường thẳng $d$ biết $d$ vuông góc với đường thẳng $d':y = - \dfrac{1}{2}x + 3$ và đi qua điểm $M\left( {2; - 1} \right)$.

Bạn đang xem: D vuông góc d


Bước 1: Gọi phương trình đường thẳng cần tìm là $y = ax + b\,\,\left( {a \ne 0} \right)$

Bước 2: Tìm hệ số $a$ theo mối quan hệ vuông góc.

Bước 3: Thay tọa độ điểm $M$ vào phương trình đường thẳng ta tìm được $b$.


Gọi phương trình đường thẳng $d$ cần tìm là $y = ax + b\,\,\left( {a \ne 0} \right)$

Vì $d$$ \bot $$d'$ nên $a.\left( { - \dfrac{1}{2}} \right) = - 1 \Leftrightarrow a = 2$ (TM)

$ \Rightarrow d:y = 2x + b$

Thay tọa độ điểm $M$ vào phương trình đường thẳng $d$ ta được $2.2 + b = - 1 \Leftrightarrow b = - 5$

Vậy phương trình đường thẳng $d:y = 2x - 5$.


*
*
*
*
*
*
*
*

Hai đường thẳng $d:y = ax + b\,\,\left( {a \ne 0} \right)$ và $d":y = a"x + b"\,\,\left( {a" \ne 0} \right)$ cắt nhau khi


Hai đường thẳng $d:y = ax + b\,\,\left( {a \ne 0} \right)$ và $d":y = a"x + b"\,\,\left( {a" \ne 0} \right)$ có $a = a"$ và $b\ne b"$. Khi đó


Cho hai đồ thị của hàm số bậc nhất là hai đường thẳng $d:y = \left( {m + 2} \right)x - m$ và $d":y = - 2x - 2m + 1$. Với giá trị nào của $m$ thì $d$ cắt $d"$?


Cho hai đường thẳng $d:y = \left( {m + 2} \right)x - m$ và $d":y = - 2x - 2m + 1$ là đồ thị của hai hàm số bậc nhất. Với giá trị nào của $m$ thì $d$//$d"$


Cho hai đường thẳng $d:y = \left( {m + 2} \right)x - m$ và $d":y = - 2x - 2m + 1$ .Với giá trị nào của $m$ thì $d \equiv d"$?


Viết phương trình đường thẳng $d$ biết $d$ cắt trục tung tại tại điểm có tung độ bằng $ - 2$ và cắt trục hoành tại điểm có hoành độ $1$.


Viết phương trình đường thẳng $d$ biết $d$ song song với đường thẳng $d":y = 3x + 1$ và đi qua điểm $M\left( { - 2;2} \right)$.


Viết phương trình đường thẳng $d$ biết $d$ vuông góc với đường thẳng $d":y = - \dfrac{1}{2}x + 3$ và đi qua điểm $M\left( {2; - 1} \right)$.


Viết phương trình đường thẳng $d$ biết \(d\) vuông góc với đường thẳng \(y = \dfrac{1}{3}x + 3\) và cắt đường thẳng \(y = 2x + 1\) tại điểm có tung độ bằng 5.


Viết phương trình đường thẳng $d$ biết \(d\) song song với đường thẳng \(y = - 2x + 1\) và cắt trục hoành tại điểm có hoành độ bằng \(3\) .


Viết phương trình đường thẳng $d$ biết \(d\) đi qua hai điểm $A\left( {1;2} \right);B\left( { - 2;0} \right).$


Cho tam giác \(ABC\) có đường thẳng \(BC:y = - \dfrac{1}{3}x + 1\) và \(A\left( {1,2} \right)\) . Viết phương trình đường cao \(AH\) của tam giác \(ABC\) .


Cho đường thẳng \(d:y = ({m^2} - 2m + 2)x + 4\). Tìm \(m\) để \(d\) cắt \(Ox\) tại \(A\) và cắt \(Oy\) tại \(B\) sao cho diện tích tam giác \(AOB\) lớn nhất.


Điểm cố định mà đường thẳng \(d:y = \dfrac{{\sqrt k + 1}}{{\sqrt 3 - 1}}x + \sqrt k + \sqrt 3(k \ge 0)\) luôn đi qua là:


Cho đường thẳng \(d:y = (2m + 1)x - 1\). Tìm \(m\) để \(d\) cắt 2 trục tọa độ tạo thành tam giác có diện tích bằng \(\dfrac{1}{2}\).


Cho đường thẳng \(d:y = mx + m - 1\). Tìm \(m\) để d cắt \(Ox\) tại \(A\) và cắt \(Oy\) tại \(B\) sao cho tam giác \(AOB\) vuông cân.


Cho đường thẳng \(\left( {{d_1}} \right):\,\,y = ax + b\) song song với đường thẳng \(\left( {{d_2}} \right):\,\,\,y = 2x + 2019\) và cắt trục tung tại điểm \(A\left( {0; - 2} \right).\) Giá trị của biểu thức \({a^2} + {b^3}\) bằng:


Cho hàm số bậc nhất \(y = ax - 4\). Xác định hệ số \(a\), biết đồ thị hàm số đã cho cắt đường thẳng \(\left( d \right):\,\,y = - 3x + 2\) tại điểm có tung độ bằng \(5\).

Xem thêm: Tại Sao Khi Đo Nhiệt Độ Không Khí Người Ta Phải Để Nhiệt Kế Trong Bóng Râm Và Cách Mặt Đất 2M


*

Cơ quan chủ quản: Công ty Cổ phần công nghệ giáo dục Thành Phát


gmail.com

Trụ sở: Tầng 7 - Tòa nhà Intracom - Trần Thái Tông - Q.Cầu Giấy - Hà Nội

*

Giấy phép cung cấp dịch vụ mạng xã hội trực tuyến số 240/GP – BTTTT do Bộ Thông tin và Truyền thông.